Quantifying the oxygen stoichiometry of Pr-doped ceria through X-ray diffraction Christian Lenser¹, Felix Gunkel², Yoo Jung Sohn¹ and Norbert H. Menzler¹ ¹: Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Materials Synthesis and Processing (IEK-1), 52428 Jülich, Germany 2: Institute for Electronic Materials (IWE2), RWTH Aachen University, 52074 Aachen, Germany Institute for Energy- and Climate Research IEK-1: Materials Synthesis and Processing #### **Outline** - Background and Motivation - HT-XRD: oxygen stoichiometry and microstrain - Impact of conductivity on cathode performance - Summary # **High Temperature Equilibrium Conductivity** HTEC of dense 20PCO ceramics DC conductivity as expected for PCO^{1,2} ¹: Bishop et al., J. Mater. Res., Vol. 27, No. 15, Aug 14, 2012 ²: Bishop et al., Phys. Chem. Chem. Phys., 2011, **13**, 10165–10173 #### PCO as a cathode material Figure of merit: $L_C = D^*/k^q$ D*: oxygen self-diffusion coefficient ka: oyxgen surface exchange coefficient Model system suggests high kq 1 Investigations on: PCO impregnated LSM-YSZ² PCO interlayer for LaNi_{0.6}Fe_{0.4}O₃ ³ PCO as an active material⁴ ^{1:} Chen et al., J. Electroceram. (2012) 28:62-69 ²: Y. Ren, et al., Journal of Materials Chemistry **22** (2012) (48) 25042. ³: R. Chiba, et al., Electrochemical and Solid-State Letters **12** (2009) (5) B69. ^{4:} R. Chiba, et al., Solid State Ionics 197 (2011) (1) 42. # Conductivity of Pr_{1-x}Ce_xO_{2-δ} #### **Outline** - Background and Motivation - HT-XRD: oxygen stoichiometry and microstrain - Impact of conductivity on cathode performance - Summary ## **Synthesis** #### Line broadening: - Crystallite size - Microstrain (Δd_{hkl}) ### Chemical expansion in air ## Microstrain analysis Microstrain: ∆d_{hkl} #### **Outline** - Background and Motivation - HT-XRD: oxygen stoichiometry and microstrain - Impact of conductivity on cathode performance - Summary ## Conductivity of 20PCO in air <u>Ionic plateau (pO₂ = 10^{-12} bar)</u> $$H_{m,V} = 0.83 \text{ eV}$$ $\mu_{0,V} = 327 \text{ cm}^2/\text{Vs}$ $\underline{\sigma}_{Pr} = \underline{\sigma}_{tot} - \underline{\sigma}_{ion}$ $$H_{m,Pr} = 0.72 \text{ eV}$$ $\mu_{0,Pr} = 589 \text{ cm}^2/\text{Vs}$ ## Sample preparation Screen printed samples on 1 mm 20GDC pellet Cathode sintering at 1300°C ## Electrochemical impedance spectroscopy #### **Assumptions:** R_{ohm} = ionic resistance of electrolyte R_{pol} = oxygen surface exchange resistance of electrode ## **Summary** - Conductivity of 20PCO sensitive to Pr-valence state - Mixed valence of Pr induces microstrain maximum at [Pr³⁺] = [Pr⁴⁺] - Polaron mobility has maximum at $\delta = 0.05 680^{\circ}$ C for 20PCO in air - Polaron mobility influences polarization resistance R_{pol} - Activation energy of 20PCO cathodes increases with T - Chemical expansion a problem for processing Thank you for your attention! Grain size is very important for properties of ceramic Control of particle size via ball-milling for solid state powders Screen printing pastes: powders in terpineol mixing the pre-suspension with ethylcellulose solved in terpineol. Layers were printed on 150 μ m 8YSZ foils (Kerafol), using a circular geometry with Ø = 12 mm for PCO and Ø = 10 mm for LSCF. Symmetric and asymmetric cells were prepared for EIS and microscopy. #### **PCO** in air #### 4-point conductivity #### **Thermogravimetry** • Change in E_A • Temperature interval close to $\delta = 0.05$