

Quantifying the oxygen stoichiometry of Pr-doped ceria through X-ray diffraction

Christian Lenser¹, Felix Gunkel², Yoo Jung Sohn¹ and Norbert H. Menzler¹

¹: Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Materials Synthesis and Processing (IEK-1), 52428 Jülich, Germany

2: Institute for Electronic Materials (IWE2), RWTH Aachen University, 52074 Aachen, Germany

Institute for Energy- and Climate Research IEK-1: Materials Synthesis and Processing

Outline

- Background and Motivation
- HT-XRD: oxygen stoichiometry and microstrain
- Impact of conductivity on cathode performance
- Summary

High Temperature Equilibrium Conductivity

HTEC of dense 20PCO ceramics

DC conductivity as expected for PCO^{1,2}

¹: Bishop et al., J. Mater. Res., Vol. 27, No. 15, Aug 14, 2012

²: Bishop et al., Phys. Chem. Chem. Phys., 2011, **13**, 10165–10173

PCO as a cathode material

Figure of merit: $L_C = D^*/k^q$

D*: oxygen self-diffusion coefficient

ka: oyxgen surface exchange coefficient

Model system suggests high kq 1

Investigations on:

PCO impregnated LSM-YSZ²

PCO interlayer for LaNi_{0.6}Fe_{0.4}O₃ ³

PCO as an active material⁴

^{1:} Chen et al., J. Electroceram. (2012) 28:62-69

²: Y. Ren, et al., Journal of Materials Chemistry **22** (2012) (48) 25042.

³: R. Chiba, et al., Electrochemical and Solid-State Letters **12** (2009) (5) B69.

^{4:} R. Chiba, et al., Solid State Ionics 197 (2011) (1) 42.

Conductivity of Pr_{1-x}Ce_xO_{2-δ}

Outline

- Background and Motivation
- HT-XRD: oxygen stoichiometry and microstrain
- Impact of conductivity on cathode performance
- Summary

Synthesis

Line broadening:

- Crystallite size
- Microstrain (Δd_{hkl})

Chemical expansion in air

Microstrain analysis

Microstrain: ∆d_{hkl}

Outline

- Background and Motivation
- HT-XRD: oxygen stoichiometry and microstrain
- Impact of conductivity on cathode performance
- Summary

Conductivity of 20PCO in air

<u>Ionic plateau (pO₂ = 10^{-12} bar)</u>

$$H_{m,V} = 0.83 \text{ eV}$$

 $\mu_{0,V} = 327 \text{ cm}^2/\text{Vs}$

 $\underline{\sigma}_{Pr} = \underline{\sigma}_{tot} - \underline{\sigma}_{ion}$

$$H_{m,Pr} = 0.72 \text{ eV}$$

 $\mu_{0,Pr} = 589 \text{ cm}^2/\text{Vs}$

Sample preparation

Screen printed samples on 1 mm 20GDC pellet

Cathode sintering at 1300°C

Electrochemical impedance spectroscopy

Assumptions:

R_{ohm} = ionic resistance of electrolyte

R_{pol} = oxygen surface exchange resistance of electrode

Summary

- Conductivity of 20PCO sensitive to Pr-valence state
- Mixed valence of Pr induces microstrain maximum at [Pr³⁺] = [Pr⁴⁺]
- Polaron mobility has maximum at $\delta = 0.05 680^{\circ}$ C for 20PCO in air
- Polaron mobility influences polarization resistance R_{pol}
- Activation energy of 20PCO cathodes increases with T
- Chemical expansion a problem for processing

Thank you for your attention!

Grain size is very important for properties of ceramic

Control of particle size via ball-milling for solid state powders

Screen printing pastes: powders in terpineol mixing the pre-suspension with ethylcellulose solved in terpineol.

Layers were printed on 150 μ m 8YSZ foils (Kerafol), using a circular geometry with Ø = 12 mm for PCO and Ø = 10 mm for LSCF. Symmetric and asymmetric cells were prepared for EIS and microscopy.

PCO in air

4-point conductivity

Thermogravimetry

• Change in E_A

• Temperature interval close to $\delta = 0.05$